Square pegs, square pegs. Square, square pegs.

Lately I’ve been thinking again about the “square pegs” problem:  proving that any simple closed plane curve has an inscribed square.  (I’ve blogged about this before: here, here, here, here, here.)  This post is just to collect some recent links that are relevant to the problem, some of which contain new results.

Jason Cantarella has a page on the problem with lots of nice pictures of inscribed squares, like the one at the bottom of this post.

Igor Pak wrote a preprint giving two elegant proofs that every simple closed piecewise-linear curve in the plane has an inscribed square.  What’s more, Igor tells me about a nice generalized conjecture:  if Q is a quadrilateral with a circumscribed circle, then every smooth simple closed plane curve has an inscribed quadrilateral similar to Q.  Apparently this is not always true for piecewise-linear curves!

I had a nice generalization of this problem in mind, which has the advantage of being invariant under the whole group of affine-linear transformations and not just the affine-orthogonal ones:  show that every simple closed plane curve has an inscribed hexagon which is an affine-linear transform of a regular hexagon.  This is carried out for smooth curves in a November 2008 preprint of Vrecica and Zivaljevic.  What’s more, the conjecture apparently dates back to 1972 and is due to Branko Grunbaum.  I wonder whether Pak’s methods supply a nice proof in the piecewise linear case.

Tagged , , ,

One thought on “Square pegs, square pegs. Square, square pegs.

  1. Em says:

    “I’d like it if they like us. But I don’t think they like us.” I really thought this was a post about the show. I was all ready to share my memories of Tracey Nelson as the bitchy girl and remind you that the Waitresses sang the theme song. Sigh.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 577 other followers

%d bloggers like this: