Squares and Motzkins

Greg Smith gave an awesome colloquium here last week about his paper with Blekherman and Velasco on sums of squares.

Here’s how it goes.  You can ask:  if a homogeneous degree-d polynomial in n variables over R takes only non-negative values, is it necessarily a sum of squares?  Hilbert showed in 1888 that the answer is yes only when d=2 (the case of quadratic forms), n=2 (the case of binary forms) or (n,d) = (3,4) (the case of ternary quartics.)  Beyond that, there are polynomials that take non-negative values but are not sums of squares, like the Motzkin polynomial

X^4 Y^2 + X^2 Y^4 - 3X^2 Y^2 Z^2 + Z^6.

So Greg points out that you can formulate this question for an arbitrary real projective variety X/R.  We say a global section f of O(2) on X is nonnegative if it takes nonnegative values on X(R); this is well-defined because 2 is even, so dilating a vector x leaves the sign of f(x) alone.

So we can ask:  is every nonnegative f a sum of squares of global sections of O(1)?  And Blekherman, Smith, and Velasco find there’s an unexpectedly clean criterion:  the answer is yes if and only if X is a variety of minimal degree, i.e. its degree is one more than its codimension.  So e.g. X could be P^n, which is the (n+1,2) case of Hilbert.  Or it could be a rational normal scroll, which is the (2,d) case.  But there’s one other nice case:  P^2 in its Veronese embedding in P^5, where it’s degree 4 and codimension 3.  The sections of O(2) are then just the plane quartics, and you get back Hilbert’s third case.  But now it doesn’t look like a weird outlier; it’s an inevitable consequence of a theorem both simpler and more general.  Not every day you get to out-Hilbert Hilbert.

Idle question follows:

One easy way to get nonnegative homogenous forms is by adding up squares, which all arise as pullback by polynomial maps of the ur-nonnegative form x^2.

But we know, by Hilbert, that this isn’t enough to capture all nonnegative forms; for instance, it misses the Motzkin polynomial.

So what if you throw that in?  That is, we say a Motzkin is a degree-6d form

expressible as

 

P^4 Q^2 + P^2 Q^4 - 3P^2 Q^2 R^2 + R^6

for degree-d forms P,Q,R.  A Motzkin is obviously nonnegative.

It is possible that every nonnegative form of degree 6d is a sum of squares and Motzkins?  What if instead of just Motzkins we allow ourselves every nonnegative sextic?  Or every nonnegative homogeneous degree-d form in n variables for n and d less than 1,000,000?  Is it possible that the condition of nonnegativity is in this respect “finitely generated?”

 

 

 

 

 

Tagged , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: