Braid monodromy and the dual curve

Nick Salter gave a great seminar here about this paper; hmm, maybe I should blog about that paper, which is really interesting, but I wanted to make a smaller point here.  Let C be a smooth curve in P^2 of degree n. The lines in P^2 are parametrized by the dual P^2; let U be the open subscheme of the dual P^2 parametrizing those lines which are not tangent to C; in other words, U is the complement of the dual curve C*.  For each point u of U, write L_u for the corresponding line in P^2.

This gives you a fibration X -> U where the fiber over a point u in U is L_u – (L_u intersect C).  Since L_u isn’t tangent to C, this fiber is a line with n distinct points removed.  So the fibration gives you an (outer) action of pi_1(U) on the fundamental group of the fiber preserving the puncture classes; in other words, we have a homomorphism

\pi_1(U) \rightarrow B_n

where B_n is the n-strand braid group.

When you restrict to a line L* in U (i.e. a pencil of lines through a point in the original P^2) you get a map from a free group to B_n; this is the braid monodromy of the curve C, as defined by Moishezon.  But somehow it feels more canonical to consider the whole representation of pi_1(U).  Here’s one place I see it:  Proposition 2.4 of this survey by Libgober shows that if C is a rational nodal curve, then pi_1(U) maps isomorphically to B_n.  (OK, C isn’t smooth, so I’d have to be slightly more careful about what I mean by U.)

 

Tagged , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: