## “Kakeya sets over non-archimedean local rings,” by Dummit and Hablicsek

A new paper posted this week on the arXiv this week by UW grad students Evan Dummit and Márton Hablicsek answers a question left open in a paper of mine with Richard Oberlin and Terry Tao.  Let me explain why I was interested in this question and why I like Evan and Marci’s answer so much!

Recall:  a Kakeya set in an n-dimensional vector space over a field k is a set containing a line (or, in the case k = R, a unit line segment) in every direction.  The “Kakeya problem,” phrased loosely, is to prove that Kakeya sets cannot be too small.

But what does “small” mean?  You might want it to mean “measure 0” but for the small but important fact that in this interpretation the problem has a negative answer:  as Besicovitch discovered in 1919, there are Kakeya sets in R^2 with measure 0!  So Kakeya’s conjecture concerns a stronger notion of “small”  — he conjectures that a Kakeya set in R^n cannot have Hausdorff or Minkowski dimension strictly smaller than n.

(At this point, if you haven’t thought about the Kakeya conjecture before, you might want to read Terry’s long expository post about the Kakeya conjecture and Dvir’s theorem; I cannot do it any better here.)

The big recent news in this area, of course, is Dvir’s theorem that that the Kakeya conjecture is true when k is a finite field.

Of course one hopes that Dvir’s argument will give some ideas for an attack on the original problem in R^n.  And that hasn’t happened yet; though the “polynomial method,” as the main idea of Dvir’s theorem is now called, has found lots of applications to other problems in real combinatorial geometry (e.g. Guth and Katz’s proof of the joints conjecture.)

Why not Kakeya?  Well, here’s one clue.  Dvir actually proves more than the Kakeya conjecture!  He proves that a Kakeya set in F_q^n has positive measure.

(Note:  F_q^n is a finite set, so of course any nonempty subset has positive measure; so “positive measure” here is shorthand for “there’s a lower bound for the measure which is bounded away from 0 as q grows with n fixed.”)

What this tells you is that R really is different from F_q with respect to this problem; if Dvir’s proof “worked” over R, it would prove that a Kakeya set in R^n had positive measure, which is false.

So what’s the difference between R and F_q?  In my view, it’s that R has multiple scales, while F_q only has one.  Two elements in F_q are either the same or distinct, but there is nothing else going on metrically, while distinct real lines can be very close together or very far apart.  The interaction between distances at different scales is your constant companion when working on these problems in the real setting; so maybe it’s not so shocking that a one-scale field like F_q is not a perfect model for the phenomena we’re trying to study.

Which leads us to the ring F_q[[t]] — the “non-archimedean local ring” which Dummit and Hablicsek write about.  This ring is somehow “in between” finite fields and real numbers.  On the one hand, it is “profinite,” which is to say it is approximated by a sequence of larger and larger finite rings F_q[[t]]/t^k.  On the other hand, it has infinitely many scales, like R.  From the point of view of Kakeya sets, is it more like a finite field, or more like the real numbers?  In particular, does it have Kakeya sets of measure 0, making it potentially a good model for the real Kakeya problem?

This is the question Richard, Terry, and I asked, and Evan and Marci show that the answer is yes; they construct explicitly a Kakeya set in F_q[[t]]^2 with measure 0.

Now when we asked this question in our paper, I thought maybe you could do this by imitating Besicovitch’s argument in a straightforward way.  I did not succeed in doing this.  Evan and Marci tried too, and they told me that this just plain doesn’t work.  The construction they came up with is (at least as far as I can see) completely different from anything that makes sense over R.  And the way they prove measure 0 is extremely charming; they define a Markov process such for which the complement of their Kakeya set is the set of points that eventually hit 0, and then show by standard methods that their Markov process goes to 0 with probability 1!

Of course you ask:  does their Kakeya set have Minkowski dimension 2?  Yep — and indeed, they prove that any Kakeya set in F_q[[t]]^2 has Minkowski dimension 2, thus proving the Kakeya conjecture in this setting, up to the distinction between Hausdorff and Minkowski dimension.  (Experts should feel free to weigh in an tell me how much we should worry about this distinction.)  Note that dimension 2 is special:  the Kakeya conjecture in R^2 is known as well.  For every n > 2 we’re in the dark, over F_q[[t]] as well as over R.

To sum up:  what Dummit and Hablicsek prove makes me feel like the Kakeya problem over  F_q[[t]] is, at least potentially, a pretty good model for the Kakeya problem over R!  Not that we know how to solve the Kakeya problem over F_q[[t]]…..