Tag Archives: Lovasz

The Lovasz number of the plane is about 3.48287

As seen in this comment on Polymath and explicated further in Fernando de Oliveira Filho’s thesis, section 4.4.

I actually spent much of today thinking about this so let me try to explain it in a down-to-earth way, because it involved me thinking about Bessel functions for the first time ever, surely a life event worthy of recording.

So here’s what we’re going to do.  As I mentioned last week, you can express this problem as follows:  suppose you have a map h: R^2 -> V, for some normed vector space V, which is a unit-distance embedding; that is, if |x-x’|_{R^2} = 1, then |h(x)-h(x’)|_V = 1.  (We don’t ask that h is an isometry, only that it preserves the distance-1 set.)

Then let t be the radius of the smallest hypersphere in V containing h(R^2).

Then any graph embeddable in R^2 with all edges of length 1 is sent to a unit-distance graph in V contained in the hyperplane of radius t; this turns out to be equivalent to saying the Lovasz number of G (ok, really I mean the Lovasz number of the complement of G) is at most 1/(1-2t).  So we want to show that t is bounded below 1, is the point.  Or rather:  we can find a V and a map from R^2 to V to make this the case.

So here’s one!  Let V be the space of L^2 functions on R^2 with the usual inner product.  Choose a square-integrable function F on R^2 — in fact let’s normalize to make F^2 integrate to 1 — and for each a in R^2 we let h(a) be the function F(x-a).

We want the distance between F(x-a) and F(x-b) to be the same for every pair of points at distance 1 from each other; the easiest way to arrange that is to insist that F(x) be a radially symmetric function F(x) = f(|x|); then it’s easy to see that the distance between F(x-a) and F(x-b) in V is a function G(a-b) which depends only on |a-b|.  We write

g(r) = \int_{\mathbf{R}^2} F(x)F(x-r) dx

so that the squared distance between F(x) and F(x-r) is

\int F(x)^2 dx - \int F(x)F(x-r) dx + \int F(x-r)^2 dx = 2(1-g(r)).

In particular, if two points in R^2 are at distance 1, the squared distance between their images in V is 2(1-g(1)).  Note also that g(0) is the square integral of F, which is 1.

What kind of hypersphere encloses all the points F(x-a) in V?  We can just go ahead and take the “center” of our hypersphere to be 0; since |F| = 1, every point in h(R^2) lies in (indeed, lies on) the sphere of radius 1 around the origin.

Hey but remember:  we want to study a unit-distance embedding of R^2 in V.  Right now, h sends unit distances to the distance 2(1-g(1)), whatever that is.  We can fix that by scaling h by the square root of that number.  So now h sends unit distances to unit distances, and its image is enclosed in a hypersphere of radius


The more negative g(1) is, the smaller this sphere is, which means the more we can “fold” R^2 into a small space.  Remember, the relationship between hypersphere number and Lovasz theta is

2t + 1/\theta = 1

and plugging in the above bound for the hypersphere number, we find that the Lovasz theta number of R^2, and thus the Lovasz theta number of any unit-distance graph in R^2, is at most


So the only question is — what is g(1)?

Well, that depends on what g is.

Which depends on what F is.

Which depends on what f is.

And of course we get to choose what f is, in order to make g(1) as negative as possible.

How do we do this?  Well, here’s the trick.  The function G is not arbitrary; if it were, we could make g(1) whatever we wanted.  It’s not hard to see that G is what’s called a positive definite function on R^2.  And moreover, if G is positive definite, there exists some f giving rise to it.  (Roughly speaking, this is the fact that a positive definite symmetric matrix has a square root.)  So we ask:  if G is a positive definite (radially symmetric) function on R^2, and g(0) = 1, how small can g(1) be?

And now there’s an old theorem of (Wisconsin’s own!) Isaac Schoenberg which helpfully classifies the positive definite functions on R^2; they are precisely the functions G(x) = g(|x|) where g is a mixture of scalings of the Bessel function $J_0$:

g(r) = \int_0^\infty J_0(ur) A(u)

for some everywhere nonnegative A(u).  (Actually it’s more correct to say that A is a distribution and we are integrating J_0(ur) against a non-decreasing measure.)

So g(1) can be no smaller than the minimum value of J_0 on [0,infty], and in fact can be exactly that small if you let A become narrowly supported around the minimum argument.  This is basically just taking g to be a rescaled version of J_0 which achieves its minimum at 1.  That minimum value is about -0.4, and so the Lovasz theta for any unit-distance subgraph on the plane is bounded above by a number that’s about 1 + 1/0.4 = 3.5.

To sum up:  I give you a set of points in the plane, I connect every pair that’s at distance 1, and I ask how you can embed that graph in a small hypersphere keeping all the distances 1.  And you say:  “Oh, I know what to do, just assign to each point a the radially symmetrized Bessel function J_0(|x-a|) on R^2, the embedding of your graph in the finite-dimensional space of functions spanned by those Bessel translates will do the trick!”

That is cool!

Remark: Oliveira’s thesis does this for Euclidean space of every dimension (it gets more complicated.)  And I think (using analysis I haven’t really tried to understand) he doesn’t just give an upper bound for the Lovasz number of the plane as I do in this post, he really computes that number on the nose.

Update:  DeCorte, Oliveira, and Vallentin just posted a relevant paper on the arXiv this morning!

Tagged , ,

What is the Lovasz number of the plane?

There are lots of interesting invariants of a graph which bound its chromatic number!  Most famous is the Lovász number, which asks, roughly:  I attach vectors v_x to each vertex x such that v_x and v_y are orthogonal whenever x and y are adjacent, I try to stuff all those vectors into a small cone, the half-angle of the cone tells you the Lovász number, which is bigger and bigger as the smallest cone gets closer and closer to a hemisphere.

Here’s an equivalent formulation:  If G is a graph and V(G) its vertex set, I try to find a function f: V(G) -> R^d, for some d, such that

|f(x) – f(y)| = 1 whenever x and y are adjacent.

This is called a unit distance embedding, for obvious reasons.

The hypersphere number t(G) of the graph is the radius of the smallest sphere containing a unit distance embedding of G.  Computing t(G) is equivalent to computing the Lovász number, but let’s not worry about that now.  I want to generalize it a bit.  We say a finite sequence (t_1, t_2, t_3, … ,t_d) is big enough for G if there’s a unit-distance embedding of G contained in an ellipsoid with major radii t_1^{1/2}, t_2^{1/2}, .. t_d^{1/2}.  (We could also just consider infinite sequences with all but finitely many terms nonzero, that would be a little cleaner.)

Physically I think of it like this:  the graph is trying to fold itself into Euclidean space and fit into a small region, with the constraint that the edges are rigid and have to stay length 1.

Sometimes it can fold a lot!  Like if it’s bipartite.  Then the graph can totally fold itself down to a line segment of length 1, with all the black vertices going to one end and the white vertices going to the other.  And the big enough sequences are just those with some entry bigger than 1.

On the other hand, if G is a complete graph on k vertices, a unit-distance embedding has to be a simplex, so certainly anything with k of the t_i of size at least 1-1/k is big enough.   (Is that an if and only if?  To know this I’d have to know whether an ellipse containing an equilateral triangle can have a radius shorter than that of the circumcircle.)

Let’s face it, it’s confusing to think about ellipsoids circumscribing embedded graphs, so what about instead we define t(p,G) to be the minimum value of the L^p norm of (t_1, t_2, …) over ellipsoids enclosing a unit-distance embedding of G.

Then a graph has a unit-distance embedding in the plane iff t(0,G) <= 2.  And t(oo,G) is just the hypersphere number again, right?  If G has a k-clique then t(p,G) >= t(p,K_k) for any p, while if G has a k-coloring (i.e. a map to K_k) then t(p,G) <= t(p,K_k) for any n.  In particular, a regular k-simplex with unit edges fits into a sphere of squared radius 1-1/k, so t(oo,G) < 1-1/k.

So… what’s the relation between these invariants?  Is there a graph with t(0,G) = 2 and t(oo,G) > 4/5?  If so, there would be a non-5-colorable unit distance graph in the plane.  But I guess the relationship between these various “norms” feels interesting to me irrespective of any relation to plane-coloring.  What is the max of t(oo,G) with t(0,G)=2?

The intermediate t(p,G) all give functions which upper-bound clique number and lower-bound chromatic number; are any of them interesting?  Are any of them easily calculable, like the Lovász number?


  1.  I called this post “What is the Lovász number of the plane?” but the question of “how big can t(oo,G) be if t(0,G)=2”? is more a question about finite subgraphs of the plane and their Lovász numbers.  Another way to ask “What is the Lovász number of the plane” would be to adopt the point of view that the Lovász number of a graph has to do with extremizers on the set of positive semidefinite matrices whose (i,j) entry is nonzero only when i and j are adjacent vertices or i=j.  So there must be some question one could ask about the space of positive semidefinite symmetric kernels K(x,y) on R^2  x R^2 which are supported on the locus ||x-y||=1 and the diagonal, which question would rightly be called “What is the Lovász number of the plane?” But I’m not sure what it is.
  2. Having written this, I wonder whether it might be better, rather than thinking about enclosing ellipsoids of a set of points in R^d, just to think of the n points as an nxd matrix X and compute the singular values of X^T X, which would be kind of an “approximating ellipsoid” to the points.  Maybe later I’ll think about what that would measure.  Or you can!







Tagged , , ,

Metric chromatic numbers and Lovasz numbers

In the first post of this series I asked whether there was a way to see the Lovasz number of a graph as a chromatic number.  Yes!  I learned it from these notes, written by Big L himself.

Let M be a metric space, and let’s assume for simplicity that M has a transitive group of isometries.  Now write r_M(n) for the radius of the smallest ball containing n points whose pairwise distances are all at least 1.  (So this function is controlling how sphere-packing works in M.)

Let Γ be a graph.  By an M-coloring of Γ we now mean a map from v(Γ) to M such that adjacent vertices are at distance at least 1.  Write χ_Γ(M) for the radius of the smallest disc containing an M-coloring of Γ.  Then we can think of r^{-1}(χ_Γ(M)) as a kind of “M-chromatic number of Γ.”  Scare quotes are because r isn’t necessarily going to be an analytic function or anything; if I wanted to say something literally correct I guess I would say the smallest integer n such that r_M(n) >= χ_Γ(M).

The M-chromatic number is less than the usual chromatic number χ_Γ;  more precisely,

χ_Γ(M) <= r_M(χ_Γ)

Easy:  if there’s an n-coloring of Γ, just compose it with the map from [n] to M of radius r_M(n).  Similary, if ω_Γ is the clique number of Γ, we have

r_M(ω_Γ) <= χ_Γ(M)

because a k-clique can’t be embedded in a ball of radius smaller than r_M(k).

So this M-chromatic number gives a lower bound for the chromatic number and an upper bound for the clique number, just as the Lovasz number does, and just as the fractional chromatic number does.

Example 1:  Lovasz number.  Let M be the sphere in infinite-dimensional Euclidean space.  (Or |Γ|-dimensional Euclidean space, doesn’t matter.)  For our metric use (1/sqrt(2)) Euclidean distance, so that orthogonal vectors are at distance 1 from each other.  If n points are required at pairwise distance at least 1, the closest way to pack them is to make them orthonormal (I didn’t check this, surely easy) and in this case they sit in a ball of radius 1-sqrt(1/2n) around their center of mass.  So r_M(n) = 1 – sqrt(1/2n).  Define t(Γ) to be the real number such that

1 - \sqrt{1/2t(\Gamma)} = \chi_\Gamma(M).

Now I was going to say that t(Γ) is the Lovasz theta number of Γ, but that’s not exactly the definition; that would be the definition if I required the embedding to send adjacent vertices to points at distance exactly 1.  The answer to this MO question suggests that an example of Schrijver might actually separate these invariants, but I haven’t checked.

So I guess let’s say t(Γ) is a “Lovasz-like number” which is between the clique number and the chromatic number.  And like the Lovasz number, but unlike clique and chromatic numbers, it’s super-easy to compute.  An embedding of v(Γ) in the sphere, up to rotation, is specified by the pairwise distance matrix, which can be an arbitrary postive definite symmetric nxn matrix A with 1’s on the diagonal.  Each edge of Γ now gives an inequality a_{ij} > 1.  When you’re optimizing over a space cut out by linear inequalities in the space of psd matrices, you’re just doing semidefinite programming.  (I am punting a little about how to optimize “radius” but hopefully maximum distance of any vector from center of mass is good enough?)

(Note:  you know what, I’ll bet you can take an embedding like this, subtract a small multiple of the center of mass from all the vectors, and get an embedding of v(Γ) in n-space with all angles between adjacent vectors slightly obtuse, and probably this ends up being exactly the same thing as the vector chromatic number defined in the paper I linked to earlier.)

Where is example 2?  It was supposed to be about the fractional chromatic number but then I realized the way I was setting this up wasn’t correct.  The idea is to let M_b be the space of infinite bit strings with exactly b 1’s and use (1/2b) Hamming distance, so that the distance-1 requirement becomes a requirement that two b-element subsets be disjoint.  But I don’t think this quite fits into the framework I adopted at the top of the post.  I’ll circle back to this if I end up having what to say.




Tagged , ,
%d bloggers like this: