Tag Archives: skorobogatov

Anabelian puzzle 4: What is the probability that a set of n points has no 3 collinear?

OK, this isn’t really an anabelian puzzle, but it was presented to me at the anabelian conference by Alexei Skorobogatov.

Let X_n be the moduli space of n-tuples of points in A^2 such that no three are collinear.  The comment section of this blog computed the number of components of X_n(R) back in January.  Skorobogatov asked what I could say about the cohomology of X_n(C).  Well, not a lot!  But if I were going to make a good guess, I’d start by trying to estimate the number of points on X_n over a finite field F_q.

So here’s a question:  can you estimate the number of degree-n 0-dimensional subschemes S of A^2/F_q which have no three points collinear?  It seems very likely to me that the answer is of the form

P(1/q) q^{2n} + o(q^{2n})

for some power series P.

One way to start, based on the strategy in Poonen’s Bertini paper:  given a line L, work out the probability P_L that S doesn’t have three points on L.  Now your first instinct might be to take the product of P_L over all lines in A^2; this will be some version of a special value of the zeta function of the dual P^2.  But it’s not totally clear to me that “having three points on L_1” and “having three points on L_2” are independent.

Tagged , , , , , , ,
%d bloggers like this: